THE UNIVERSITY OF TEESSIDE
SCHOOL OF COMPUTING
MIDDLESBROUGH

CLEVELAND

TS1 3BA

CREATING A VIRTUAL WORLD DESCRIBED BY
CUSTOM MAP DATA

BSc Computer Games Programming

April 2006

TR D Hill

Supervisor: T P Davison

Second Reader: T Nelson

Abstract

This project details the investigation of using map data, to automatically create
assets, with the purpose of re-creating the world the map represents, carried out by

Tom Hill as part of his Final Year Personal Practical Project.

The project was separated into three main stages. Firstly, the process of how a
framework to support map data could be created is followed, resulting in the
production of a design to follow to allow for provision of default functionality, while

also letting it be replaced by the developer.

Next the process of how to create a three dimensional model from the two
dimensional shape of the feature defined by the map is investigated. A feature may
not just be the geometric shape defined by the map, and so the idea how extra
information called Meta data which defines unique properties of the feature can

affect the production of a mesh is followed.

This leads to the production of a system whereupon the mesh is separated into
common zones of volume, produced by differing methods. To give a developer an
amount of customisation to the production of these zones, extra objects called Zone
Decorators are used to apply detail areas to the faces within the zone. These
components when mixed provide the potential to automatically create a wide range

of mesh types.

The final stage of the project seeks to test the designs set out before, by creating a
test application aimed at seeking the perspective of a developer using the framework

for inclusion within a visualisation application.

With the implementation of the test application complete, the project seeks to
evaluate the design, and predict what testing requirements a real world framework
would need if it were to serve its external developers correctly. Finally a collection of

further work is recommended to future complement the work of this project.

Acknowledgments

Primarily, thanks go out to Tyrone Davison, the supervising tutor of this project for

his guidance and support from beginning through to the end.

Secondly a ‘bucket-load’ of thanks goes out to a number of people who have put up
with my ramblings, offered advice, opinions or even just some motivation at various
stages throughout the project, these are in no particular order; Edward Smith,

Alistair Parr, Peter Knee, and Tom Salter.

Thirdly much thanks goes to the University of Teesside’s Learning Resource Centre

which put up with me for far too many hours throughout the project duration.
Finally, but most importantly a massive thank you to Doreen Hill and Laura Stockhill
for proof-reading this document which most likely covered material far outside their

interest bounds, but still stuck with it anyway.

Thank you.

Preface

This document is centred on the technical side of the creation of a product
combining two main subject areas; geography and virtual asset creation. As such
technical language will feature within the report. It is intended that the average
reader have the basic knowledge of how virtual assets are created, and what maps

are, as well as most importantly a basic grasp of programming.

For further reading beyond this document, please consult the Bibliography in

Appendix B.

Contents

1. INtroducCtion.....cccvrvemsnessnmsnnssnssnssanssnssnnsnnsnnssnnsnnsnnsnnnnnns L

2. Methodologycimrmmrmmrmsmrmsressassssnssassasssnnssassnsnssasnnnnnns 4

A S © V= o = 4
2.2. Stage One & Two - Pre-implementationcccccoeeviiivviiiennnnneennnnn, 4
2.3. Stage Three & Four - Implementation...........cceeeiieviiiiiiiinicnice e, 4

C T . V1 1= 1V R .
3.1. What does a Map contain?ccceeiveriiriiinieiinerern e e e 6
3.2. What Applications Might it be useful to use Maps within? 7
3.3. If the system was for a software developer, what exactly would they
want to do with the data anyway?ccccoeiiiiii i 8

3.4. Maps need to be simple and abstract in concept, then they can be

pragmatically representedccceivieiiiiiiii s 9
341 THE BASICS OF @ FEALUIE ...cccvvvvvisisssieeiiiissiissssssssannssssssssssssssnnnsssssssssssssnnns 9
3.4.2. Simplifying the properties Of @ FEALUIe...........uvvveeeeeiirsssiiiississssssssssssissnnns 10

3.5. How can a system support 'any' form of data?......c....ccoeevrvvnnrrennnn. 11

3.6. How would the map data itself be stored?........cccoovviriniiiiiiinnnnnnn. 11

3.7. Raster or Vector Map data.........cceeeieveniiiieiiniernisseen s ser e 12

3.8. What sort of issues could automatic asset creation come up against?

13
3.9. Requirements of a produced mesSh.........ccceeviiiiiiiiiiii e, 15
3.10. The Process of Conversion from a Feature to an Asset.................. 15

7 W ~ =YY == | of R I 4

4.1. Storage File formats.......ccuuuiiiiiiiii i 17
4.1.1. Ordnance SUrvey Master MaDccccccureeuuiivssseessssssssssisssssssssssssssssissssssnns 18
412 Geography Mark-up Language (GML)eeeeeueeeeeerisissisisassssiissssssinnns 19
4.1.3. F e (=l | - B 21
4.1.4. TEChNIQUES FOI IASEES PIOCESSING......uvvesisssssssssssisssssssisssssssssssssssissssssiinens 22
4.1.5. Defining multiple fEQLUIES.cccoeee 23
4.1.6. a0 gl D | - S 24

4.1.7. Meta Data

4.2. Shape Tessellation.......ccovveuiiiiriicie e 25

4.2.1. CONVEX POLYGON TESSENALION.eeeseeeseeiseseeseeseeesesesesesessessseseesaaes 26
4.2.2. Non-convex Polygon TESSEHALIONccccuuueeiirssisssesssisssssisisssssssisssssssnns 26
4.3. Testing bounding with Feature shapes........c.cccceveiiiviiiiiniiieininnes 27
4.4, TOOIS ChOICEceviiiirriiiir s 27

SR D 1= T« | o ..

5.1. The Underlying Frameworkccoovveriiiiiiiieeic e e eenn 29
5.2. Definition of @ FEatUreccuvviiiiiiiiiiiiee e 31
5.3. Framework Storage Module........ccoviveiiiiiiiiiceeeeer e 32
5.3. Framework Storage Module........ccceeiiiiiiiiiiiiciicceer e 32
5.4, Framework INPpUL.......coiiiii e e 32
5.5. Framework OUEPUL.......cccviiiii e 33
5.6. The Proposed deSigNccieeeuiiieeriiieernssesnnssesssssssnsssssssessnsssenns 34

5.6.1. ODSEIVALIONS ..oeevvvviiisissssssiiisssssiissssssnnsssssssssssssssnnssssssssssssssmmnssssssmsssssnnns 35
5.7. Exploration of Helper functions.........ccccovveviiiiiii e 36
5.8. Finding features on @ Raster Mapcccocveviviiiniiiiiniin e, 37

5.8.1 RECOGNISING SNAPES......cccoeee e 37

58.2. Pafring Up MELa QaLa.......ccuuuveseeesiissssssiiissnns 37
5.9. Creating @ MEShccvviiiiei e e 38
5.10. MESh MaKEF....ccvuiiiiiiiiiiiiiieiiie s rer s e s s r s erna s 38
T B o U= =T 39
5.12. Stripping for the Decorator.........ccceviiiiiiiiiin e 40
5.13. Decorating the StrPSccuviiiiiiiiiiiirii e 42
5.14. Keeping Surface Informationccccoeeviiiiiiiiiiiieere e 43

(ST =T [y T c Y - - |

6.1. Proof of CoNCEPL.....ccuiiiiiiiiiiiri e 44
6.1.1. Raster & Meta data Reading of the Frameworkccoueeeeeeeeeeeeeeeenn... 45
6.1.2 Ease of use of the Framework Architecture..................cccccvvvvvvivivivnnnnnnnn. 45
6.1.5. Mesh Creation fUNCHONGNEY............cuuuuvevssseesisssssssisssssssssssssssssssssssssssssssnns 45

6.2. Testing for the future.....c.coovevii i 46
6.2.1. Ll e = X 46
6.2.2. AULOMALET TESLING ... s ssss s 47
6.2.3. EGSE OF USC.....cccoovivieiiiiiiiiiiiiiiiiisiiiieiiieeeiseeesie ettt 47

7. Evaluation.....ccccevemvemsemssessnmssnssnssnnssnssnssnnssnssnssnnsnnssnnnns 48

/2% T I = = 0o T 48
7.2, ThE PrOJECE .ceuniii it 48
8. Recommendationsccoruremrmrmssnssnsssnssnssnssnssnnssnssnnss 50
8.1. Integrate 'True’ Map data.........ccoeeiiiiiiiiiiiii e, 50
8.2. Increase number of Zone Maker & Decorator Types........ccceverreennn. 50
8.3. Different types of Test Applications for the Framework 50
8.4. Map Features that do not Represent Physical Objects within the
17175 o PRSPPI 51
8.5. Implement Non-convex Polygon Tessellate.........ccceevvvevniiieennieennn, 51
8.6. Investigate how this technology affects the art pipeline................. 51

9. ConClUSIONS....cieurmerreirmirmsmssssr s s s s sm s nsnnnnes 92
10. Referencescureurmssmssmsssessassassnssnssssssassassnssnssnnssnsnnsas 54
Appendix A - Specification.......cccicircriniriinririranae: 35
Appendix B - Bibliographycicirciimnimnseimneinsnesanae: 56
Appendix C - User Instructions.......c.ccocurermimarermnrernsnasanaas 58

Appendix D - Screenshotscocivimirreinneinsnesesnasesnanes 59

Vi

Tom Hill Creating A Virtual World Described By
Custom Map Data

1. Introduction

The world’s information is becoming ever connected; this has come to mean that
data is fast becoming not only a very important but an extremely accessible
commaodity. With the various technological improvements that have lead to this
current scenario, one driving factor has been the increase in computational power on
offer for devices. The power now being offered means that for the first time there is
enough functionality to start visualising data that previously would have been too
expensive in terms of computational and hardware requirements. It is an exciting
time, leading many to find both useful and unique ways to show and link the data,

and so producing very powerful and unique analysis tools.

As this trend continues, more quantity of analysis is naturally demanded merely
because it is now possible. A higher amount of data can enrich a product and make it
seem more valuable. However more data means more analysis and interpretation
must be undertaken, which if this process is manual, will increase cost. It is this
stumbling block that must be overcome, if applications are to be created that use the

data in interesting and useful ways.

Interpreting map data is an excellent example of this. Many computer systems of
today look to create virtual worlds, and what better to base those worlds on, than
the real world itself? A number
of products are taking
geographical data and using it
in useful ways. Google Earth
for example, is currently
attempting to create a virtual
globe where every street and

building can be found

anywhere in the world. Not

Image © 2006 State of New Jersey

Figure 1.1 - Google Earth's Representation of
application actually attempts to New York

content with just that, the

recreate some major cities into three-dimensional simplified versions of their real life

counterparts, as shown within Figure 1.1. Whilst in contrast, route finder systems

(such as 7om Tom Navigator, Figure 1.2) are using map data to calculate the user a

path to follow to their destination.

What is common with these systems is that, as they become more technologically
advanced, they are slowly incorporating 'extra detail' features that allow for much

more complex representations of their geographical dataset to be created.

Most systems in this category share similar characteristics; they eschew as much
manual input as possible, in favour of an automated system that can handle the high
amounts of data for them. This keeps the cost of processing the map data to
produce a visually pleasing output to a minimum, however many of these systems
are quite underdeveloped and offer very simplified versions of the world their map

represents.

Almost certainly, the trend for analysis of maps identified will continue, while it is
highly likely much better quality
representations of the data
represented within maps will be
demanded. As the technology that
allows map analysis gains ground, it
will be deployed within a larger range
of applications to cross reference data,
for a variety of different intents.

Figure 1.2 - Tom Tom Navigator Product

It is the intent of this project to first
investigate a solution that could be used by software developers to easily ‘plug’ in
map data into their application. Secondly it will investigate how to use this data
effectively for the purpose of creating asset data for a three-dimensional world. More
specifically the majority of the work in this area will be focused on the creation of
three dimensional closed geometric models, known as meshes, from the elements

and their properties contained within the map.

To investigate the first intent, the project will attempt to define what map data
contains, what elements of this data are fundamentally important for the developer,
and how the developer might want to successfully use them within a real application.

The mesh creation aspect of the project will be addressed by attempting to break
down the process of creating a mesh into abstract and generic pieces, so that a

generic solution can be found.

The fundamental areas of the project will be tested via an application created
specifically for the project that will read in example map data and output a series of
meshes representing the map’s world. The success of this application, which will
build upon the analysis and design described within the document, will be seen as a

proof of concept for the overall ideas and techniques suggested within.

This document will begin by detailing the methodology applied to the work carried
out during the project period. Next the findings of the analysis of the problem will be
presented, and will move onto any required research in response to that chapter.
From there, the design section will attempt to draw all of the previous information

together to produce a template upon which to build the proof of concept application.

At this point, the application’s test processes will be described, which will follow onto
an evaluation of the system to access any successes or failures found within the
solutions created. Finally, the document will present a collection of recommendations

to the reader.

2. Methodology

2.1. Overview

The work for the project was centred on the production of a solution to the two
problems defined within the Introduction Chapter. Work flow elements were split into

four sections, described within Figure 2.3.

1) Produce a design for a framework for a developer to integrate
map data into this application easily.

2) Produce a design for a system of asset creation, giving a number
of parameters.

3) Produce the implementation of the systems described in (1) &
(2).

4) Produce an application which mirrors the role of a developer, to
test the systems in (3).

Figure 2.3 - Project Goals

2.2. Stage One & Two - Pre-implementation

These stages concerned themselves with the production of a framework to process
map data. The framework would take into consideration developer requirements of a

third party Application Program Interface (API).

1) Analyse the problem.
2) Research into background.
3) Generalise into core components.

4) Design each element.

Figure 2.4 - Stages of Work Process
Each sub-stage of the work process seen within Figure 2.4 logically leads onto the

next. This allowed for a linear approach to be taken for the pre-implementation
work, and saw the production of both a design for a map framework, and a solution

to asset creation.

2.3. Stage Three & Four - Implementation

The execution of these stages followed a more cyclic approach. As the

implementation of the designs in Stages One & Two was constructed piece by piece,

each element was tested via the test application required by Stage Four. This meant
that the construction of the test application was directly reliant upon the construction
of the design, but allowed for an approach which allowed immediate evaluation on

each element of the implementation to see whether it worked, which encouraged the

evolution of the system to incorporate feedback from a developer perspective.

1) Implement element of Stage Three.

a. Implement Testing of element for Stage Four.

b. Evaluate, if changes need to be made to element, do so.
2) Move onto next element.

Figure 2.5 - Work Process

3. Analysis

3.1. What does a Map contain?

Before representing maps within a software product, it must be understood just what
information is contained within them and what information is essential to be held

within a collection of data (or dataset) for it to be considered a map.

Looking to maps, it must be known what they can contain, so that an image of what

data to expect can be created. The process to achieve this, can begin by observing

what types of data is represented

e Buildings
on a map. Looking at the range of e Relief
represented data types within * Rivers

e Lakes

Figure 3.6, it can be seen that
e Roads & Road features
there may be some form of

e Stations
similarity between them all, so o [Feress
that an abstracted definition of a e Churches

(] Houses

map can be formed. Every piece of

e Bus routes
data could be thought of as a .
e 'Average traffic' data for roads (used by route

property of the map, or as a planning software)

feature of the dataset it e Height of buildings

represents. e Addresses
e Type of vegetation in area

A map shows very little data that Figure 3.6 - Typical examples of Map data
could not be contained within these features. In fact the map itself is really just

showing how all of these pieces of data, representing objects in the world, are
positioned in relation to each other. This positional data of the objects could even be
thought of as a property of each feature and not a property of the map itself,
therefore it can be deduced that the term ‘map’ means ‘a collection of different types
of features’. The map itself has very little data that it owns.

In Figure 3.6 there are some data types that have no real visual representation on
the map. For example, the height of buildings could not really be accurately
conveyed on a plan drawn representation of a town. Data types such as this would

need to be considered as properties of the features they are linked to. In this way
the features could still contain information such as building height, but just not show
it in an immediate way. Of course on some maps, the solution to this problem would
be to simply draw a numerical figure on top of the feature that detailed its height.
There are very few types of data listed within Figure 3.6 that could not be considered

either a feature, or considered a property of another feature on the map.

3.2. What Applications Might it be useful to use Maps within?

Before creating a solution to use map data, it would be useful to ask what this map
data might be used for. The answer to this might contain clues or constraints as to
how a solution would be created.

As map data is, by definition a representation of a world, the simple answer of what
they are useful for, could be any application that requires data from a world.
However this is not a clear answer. Maps are the alternative to creating a perfect
copy of the world to be represented, they simplify the features within the world and
store the key properties needed to identify the feature’s key characteristics.

Maps are not always used to describe the real world. They might be used to define a
world that does not exist. To use a map might be especially useful for applications
creating the virtual worlds existing in Games, or Computer Graphics’ work.

These disciplines typically have considerable artwork requirements, if a map could be
used to initially define the environment, which could then be processed and the
environment could be automatically visualised by software, this would save a huge

amount of time within the asset creation timeframe.

If the map itself was kept simple enough to be able to be easily edited, then changes
to the environment’s make-up would be simple, and quick to make, further helping

the creativity process.

It is also important to remember that the map itself does not just define geometry.
In the case of games, a huge variety of features could be defined. Properties of the
game such as Non Player Characters’ movement paths or level goals could all be

defined within the map. Not to mention the geometry of the levels within the game,
being able to be easily edited and changed, promoting a faster throughput of asset

modification.

These examples of uses mean that expandability for differing functionality must be
strived for, while also generic definitions of features within the map will certainly be
needed, as a feature may actually represent something that cannot be previously
anticipated. The map must be thought of as a blueprint, able to define anything of

the world it represents.

3.3. If the system was for a software developer, what exactly would

they want to do with the data anyway?

All uses of map data by software developers would rely on first providing easy access
to the map data itself. This translates to being able to let developers easily import
and query the map dataset. A logical, easy to understand interface for any tools
provided is a must, but this is also a requirement of any software system, as a

developer cannot successfully use a tool if they do not understand it.

Taking these points further, while combining them with the nature of our dataset, a
developer would probably like an easy way to be able to differentiate between map
features; therefore these map features seem likely candidates to be their own
specified objects within the framework. The developer would likely want to query
each of these features for any properties associated with them, as well as extract

their values.

This one property of the framework may prove to be rather difficult to abstract as
the data itself could be anything, from a name or address, to a quantitative piece of
data like a height value. From this it seems that the only mutual property all of these
have in common is that they are 'pieces of differently typed data’, which add detail in

some unspecified way, and are associated with the feature.

The last point to be made for the developer’s requirements is that the developer will
likely want to produce some form of output from the map data after they have

processed it in the way they envisaged. This output will very likely need to be in a

form that can be customised according to the application. This suggests that, if
needed, the developer should be able to introduce their own functionality into the

framework’s processes to allow them to get the results they want.

3.4. Maps need to be simple and abstract in concept, then they can

be pragmatically represented

Features on a map need a way to be abstracted, and simplified, so as to not only
make the implementation of a framework easier to produce, but to increase the
usability aspect of the software from a development perspective. Therefore, the
more generically constructed the representations within the framework, the more
situations they can be applied successfully to. This will result in a higher usability

factor for the framework.

3.4.1. The Basics of a Feature

To begin this process, it would be useful to know what properties a feature of a map
may have, and which of these are common amongst all different possible feature
types. If this bare basic representation of a map feature can be abstracted
successfully, then the pragmatic representation of the map as a whole will be far

simpler, as we have already defined a map as a collection of features.

All features would seem to have a shape to define themselves within the world, and
then a set of data elements of unknown size which define their unique properties
(which are not shared between features, for instance a tree may have a 'leaf size'

property, but a building almost certainly does not).

Only one potential conflict with defining the map as a set of features arises, and that
is when considering the actual relief area itself. Is this a 'feature' or is it part of a
'map'? Whereas other features would normally have a shape that is mapped onto the
underlying relief below it, the whole area of the map defines the relief. Does this
make it a special case, or could it still be considered a separate feature? Considering
that the only thing that differentiates a feature and relief is the height data, it is a
feasible jump in logic that a feature should also be able to contain height data if it is

available. Terrain could then be treated just like any other feature within the map.

1) Features have a position within the world.

2) Features have some description of their shape / dimensions

3) Features have some sort of type to describe themselves (house, tree, grass etc.)

4) Every feature can have a number of unique properties describing data about
themselves

5) Features could have height data attached.

Figure 3.7 - Per-feature Data

3.4.2. Simplifying the properties of a Feature

While looking at the list of common properties in Figure 3.7, both Points (1) and (2)
describe location based data, (Z) could be made redundant by simply incorporating it
within the shape definition of (2).

Points (3)and (4) again are open to debate as to whether they can be combined. Is
it correct to force every feature to have a type? Perhaps the map only describes one
type of feature, in which case type data would be made redundant from a feature
definition. From a developer perspective too, is it correct to force a type of the
framework's devising onto them, to then have questions arise as to how they will fit
their own type into the range of pre-defined ones? This suggests that type data
should be an optional property, and so would be part of a piece of custom

information. Therefore (3) could be considered part of (4).

With point (5), it too could be argued that it is a custom piece of data to be held
within (4). However, values will always be numerical representing the height at a
specific location within the map. This situation is different than that of (3)s merge
with (4). Type data could be an integer ID, or it might be a type name stored within
a string. As point (5) is actually describing the geometry of the feature, it would
make sense to make (5) an optional property of the shape definition (2).

In this case, it is recommended that height values across the shape of the feature be
considered a standard part of every feature. The height values are taken from point
samples within the map. As the type of data of these height values can be predicted
(it would be a single numerical value), the framework can support them as standard.

This is also an opportunity to take a value adding opportunity in relation to the

10

framework’s functionality. If functionality is added that can allow the developer to
easily process these values, perhaps being able to access a model of the surface
they describe would significantly simplify the process of using the data. This analysis

transforms the definition of a feature to that described in Figure 3.8.

1) Features have some description of their shape / dimensions.
a. This shape data can have height data attached.
2) All features have a number of unique properties describing data about

themselves.

Figure 3.8 - Revised Per-feature Data

3.5. How can a system support 'any' form of data?

To let the developer change the type and elements of data contained on each
feature of the map to comply with Point (2) of Figure 3.8 is a useful capability of the
proposed framework. To be able to support this data within the framework, the size,
type, or even the number of elements of data within it must be known. If these Meta
properties of the data are left unknown, it will be impossible for the framework to

allow a straightforward query of its values.

These values cannot be accurately worked out by the system alone, as it is
impossible to predict what data a user will have entered for each feature. This
translates to become a new requirement; any data for a feature will need to be
considered Meta data, by having a description of what data types it contains
accessible.

3.6. How would the map data itself be stored?

Traditionally maps are thought of as paper based, and this has directly translated to
them being represented as images on computer systems. In this representation, as
far as the computer is concerned, it has an image file, and not a piece of map data.
For the computer to be able to start recognising information from the map, it must
follow the same process as humans do - recognise each feature as a separate entity.
This suggests that the system needs image recognition abilities, i.e. to develop map
reading skills comparable to a human’s, or the data is marked by some other way to

allow the computer to recognise the map data.

11

Obviously from a system perspective, to directly translate a map in image format into
each of its separate features would be an intensive process, presumably requiring
much shape recognition processes to be carried out on the image by the system. The
alternative would be to manually mark-up the information, effectively making the

human do the complex tasks of feature recognition.

As the point of the project is to try to decrease asset creation timings, this is an
unacceptable scenario when handling maps stored as images. However, for the
scope of the project, creating a complete shape recognition solution for marking up
features on maps stored as images would be outside of its scope. Therefore a
compromise must be created for the project, where it will support map images, but
not to the extent that it will be trying to recognise complex feature types. If the
images are simplified to solid colour shapes, with no text labels, this should decrease
the complexity of the overall image, and make marking out the relative features far

simpler for an algorithm to accomplish.

In relation to input files for the framework, to use map data previously marked up,
or to mark it up manually while processing, is a key issue of map creation decisions
for the framework. If the raw sample data of the mapping process was exposed,
then the marked up version, which from here on in will be referred to as the ‘vector’
style, will be more feasible to use. However, if this raw data is not available, then the
alternative will be to use image data (herein referred to as ‘raster’ style), as this type
of map will demand less time to create initially, but require a potentially complex
process to mark it up.

3.7. Raster or Vector Map data

Without considering whether they can be supported due to the issues described
within the previous section, raster and vector data style maps must be more
precisely defined. When a ‘vector’ type map is talked about, it is thought that the
map, as a dataset, is marked up into its various features with their properties
correctly. For raster map types, this is not the case, the connections between
properties and features must be made by the reader of the map, as the data is
stored as just a visual representation of the map area.

12

Using these definitions, it is preferable to use vector type data in regards to the
framework, as this is the type of data that precisely defines each feature within the
map. Little pre-processing is required as opposed to the raster type data, which is
data that defines each feature within the map visually and may not even do this as
precisely as the vector option. This is due to the encoding process of storing the data
within the image file which has limited resolution with which to store the range of
data. Whereas the vector format can provide support to precise positions, the raster

will only allow positions at the set pixel points within the map area.

So not only does vector type data provide the computer more knowledge of what the
map contains, when its Meta data carrying properties are taken into account, it will
also be far more precise for feature shape definitions. For the developer, this offers

increased accuracy and a far richer dataset to play with, a much preferable choice.

With these issues in mind, some points should be kept in mind for the project,

defined within Figure 3.9.

¢ There can be more than one type of input to the map system.

e Vector map data should probably take a prominent role within the framework, as it allows
better usage by the developer.

e Perhaps a 'raster' to 'vector' data convector would be useful for situations where map data

is encoded in raster format.

Figure 3.9

3.8. What sort of issues could automatic asset creation come up

against?

Once a developer has raw data from the map, there are quite a number of different
issues that they will immediately be faced with when trying to produce a form of
output that mimics that of what the map represents. The immediate concern is how
to transform a feature, currently defined as a shape on the surface of the map, into
a representation of what it is in the real world.

In the case of the creation of a mesh for a basic building, while the base shape of
the mesh is fully accessible as it is part of the standard feature definition as defined

13

in Figure 3.8, how is this two dimensional shape built upon to become a three

dimensional mesh?

A basic solution to this problem could assume that the building’s height information
would be part of the feature’s Meta dataset. Using this, the mesh could be formed by
extruding this base polygon upwards to the height defined within the Meta data thus

a basic building shape could be defined.

From this basic shape, it should be possible to expand upon what the feature should
look like in three dimensions by adding extra detail. Using some extra Meta data
values that define the properties of these details would be an excellent use of the
custom data properties of features. Perhaps even if these were not defined, they
may take randomised values that conform to a range of values allowing even the

custom data to be optionally defined by the user.

While it might be very simple to just extrude a feature's shape upward by a defined
height, this does not take into account scenarios where a feature’s true shape is
variable throughout its height. The feature's map shape might be its visibility from a
plan view above, hiding its true shape at the base. The reverse situation could also

be true.

The framework must not consider that features have constant dimensions over the
range of its height. In the same vein, a feature may not even have matching
appearance when viewed from different angles around its circumference. Mesh
creation must therefore make differentiation between the faces of the base shape
and areas of height of these faces.

These observations lead to the requirement that custom functionality must be
supported within the mesh creation process at a number of levels.

14

e The base shape of a feature could be used at any point of the creation process.

e Meta data of a feature must be available to be able to influence the creation process.

e Faces and areas of height must be differentiated between within the creation
process.

e All areas of the system (from properties of data, to functionality) should be able to be
customised.

Figure 3.10

3.9. Requirements of a produced mesh

Taking a step back from the mesh output, it should be questioned as whether there
are any requirements on how to form the output. It goes almost without saying that
the mesh would

be much more
use if its surfaces
are tessellated
into triangles.

Tessellation of

polygons is a

required step
within the

creation of the Figure 3.11

mesh (Figure 3.11). Simple convex polygons might well be simple to tessellate, but
seeing as any shape of feature is to be supported, this suggests that non-convex
polygons could become an issue, and certainly an issue that developers would likely

want a solution for.

3.10. The Process of Conversion from a Feature to an Asset

Aside from the exact process of how the volume of the asset is derived from the
feature, if this process is to be defined as expandable, it will be useful to define,

from a developer perspective, the overlying process.

15

Many different types of features might want different types of meshes to be created.
As mentioned above planar dimensions cannot be guaranteed to be the same
throughout the range of height, and so this suggests perhaps the mesh creation will
need to define the creation of these differing areas as separate creation processes. If

they are separate, then they are viable for overriding from a developer.

This could hold true for any areas of detail on meshes, as in the case of a simple
building. First its framework could be created, which is merely a mesh defining its
volume, then the surfaces of the mesh that depict the walls of the building could be
filled with details such as windows, signs or guttering, to help define what the mesh

is supposed to represent.

The ability to add detail areas is a very important requirement of the system. Any
meshes created could be aimed at anywhere between very simplified to very
accurate representations of the world the map represents. The extreme case would
be to reproduce the real world to an extent where the mesh and feature are no
longer distinguishable. Allowing developers to be potentially able to add an infinite
amount of detail therefore is a requirement of the mesh creation system.

Of course reproducing an automatically created photo-realistic mesh will be beyond
the scope of this project’s investigation, but the underlying feature set will need to
be produced to at least allow the possibility of this outcome in future. The ability to
create a base mesh which could then be manually edited further would also be seen
as a success, as this would help hit the project’s aim of decreasing asset creation

time.
Whatever the implementation eventually produces, it must consider a mesh to be

broken down into separate construction elements, which are then able to be
replaced and reused to the developer’s prerogative.

16

4, Research

4.1. Storage File formats

There have been two different data types that have been defined as able to store

map data.

Raster data would obviously be stored within an image format, but which? Well it is
questionable as to whether this choice matters as long as the map information’s

data, i.e. the shape of features, is not lost within the encoding process.

Vector type data, due to its highly expandable properties would need to be contained
within a file format that also contained a description of the data described within it.
As described in the Analysis section above, this is a requirement of the Meta data

capabilities.
Before discussing what file formats would be supported by the project’s

implementation of the framework, it would first be useful to look at other

professionally produced mapping software.

17

4.1.1. Ordnance Survey Master Map

At the forefront of examples of a professional application using map data storage is

the Ordnance Survey (OS) Master Map solution. The maps for this solution are

defined as a marriage of all of the Ordnance Survey's datasets. These different types

of data are defined as layers, with the Master Maps themselves split into four distinct

layer groupings.

e Address Layer

Essentially this is a database of every
address in Great Britain (originally taken
from Royal Mail’s Postcode Address File,
PAF®), but with one useful inclusion - a
precise map location of where that address
is on the map. This then allows for other
layers to link up the address information to
specific features contained within the map.

e Imagery Layer
A collection of colour aerial to-scale images
of the area contained within the map.

¢ Integrated Transport Network (ITN)
Layer
The ITN layer contains data on the road
network within the map. Each junction is a
node at which multiple roads can join
together. The network is able to be queried
to generate route planning information, and
as each road contains properties such as
traffic calming measures, bridge height
limits or whether they are one way only
these can be used within the calculations
too.

e Topography Layer
The topography layer is what should be
considered as the 'traditional' map layer. It
contains all of the data normally expected
of a map, with features such as buildings,
height data, roads, land and administrative
boundaries. All of these features are
accessible in this layer, allowing to be cross
referenced with the other layers provided.
Each feature is considered its own entity,
allowing them to be filtered and selected
with ease.

Cobden
Marine

Court

ﬁo'p[

iy

Winch

Lgp“fﬁyr.‘i“"?

T By, Pontoon

Landing Stag

Figure 4.12 - OS Master Map Summary

18

Considered separately, each layer of the OS Master Map described within Figure 4.12
presents a detailed set of data. However its real use is in how it allows connections
between these different datasets to be formed. For every piece of data, there is an
accompanying locator tag, which holds a unique identifier. By using this identifier,
the information for features between datasets can be cross referenced. The system
on a whole is given a massive amount of usage value onto its feature set by allowing
this. To use the OS Master Map as the starting point for this project would seem at
first highly beneficial, as the map data conforms to the analysis of the vector type

format described previously.

However, there are a number of factors which prevent this. Firstly, although the data
is raw (and potentially extremely useful), it is questionable as to how appropriate it is
to use it for the nature of automatic asset creation for the project. The data would
contain a high amount of detail that is unlikely to be used within the asset creation
aspects of the project to actually affect the outcome, as to do so would require
introducing the same amount of functionality. This would likely be too much of a

labour intensive task for the scope of the project.

Ultimately however, the most important factor in the decision of whether to use the
OS Master Map system is that in order to gain access to the digital map data, the
project would require either a license holder membership to the OS, an extremely
costly one off payment for limited use of a specific area's map data, or finally
through a subscription to an Athens package, to which the University does not

currently subscribe.

These two options mean that usage of the OS Master Map system is really limited to

just observing how specific areas in functionality are handled by OS.

4.1.2. Geography Mark-up Language (GML)

The most important and poignant issues from the project's point of view on the map
data initially is that of how map data is stored, as this will dictate the initial
functionality needed to be implemented to use this data. The OS Master Map
software has obviously encountered some of the issues outlined previously in the
Analysis section of this document as regards to Meta data. The major problem of

19

how to support multiple types of features, all with different definitions of how their
data is stored, seems to have been solved by the OS Master Map solution by using

XML to store all of the map data.

However, upon investigation this implementation is not of the OS’ own doing. They
are using an open standard of geospatial description called the Geography Mark-up
Language (GML). GML is a set of XML Schemas which describe basic types of
features able to be represented within map data. The important point of GML is that

it is an international standard which currently seems to be only supported in a

gmil;_Object

i
[I
gml;_GML gml:_Value

aml;_Feature gml;_Geometry aml:_TimeOhject gmi:_Style

gmi:_Topology gml:Definition gml;_TimeReferenceSystem

agmil:_Coverage T

gml-Chsenation gml:UnitDefinition gml_RekrenceSysiem

Reproduced from GML ISO Definition gmi:_CRS

Figure 4.13 - GML Object Hierarchy
significant way by the Ordnance Survey and some scientific research outlets. Its

existence is warranted by the aim of being able to have a consistent format to map
data, so that it may be easily imported and exported by a wide variety of
applications.

The GML standard defines a set of object hierarchies to which any implementation
must adhere. Essentially it is a design for when abstracting map features into
common properties. As visible within Figure 4.13, GML separates map data at the top
level into a number of different types, but most remark-worthy are Features,
Geometry, Topology, and Time Objects. These are discussed in more detail within
Figure 4. 14.

20

This wide range of definable features suggests that GML has been created in mind of
encompassing all known possibilities when it comes to representing map data. While
this immediately seems to fit within the scope of the project, questions must be
raised over whether the definitions themselves are too much for the scope of the

project.

e Features

Features within GML are defined as the information of any specific feature on the map. Inside
them is stored all sorts of Meta Data that the feature contains, as well as unique locator and
identification tags.

e Geometry

Geometry is the physical geometric representation of any feature on the map, whether that be a
collection of straight lines used to define a border, a circle object to define a roundabout, or any
number of vector representations such as curved lines used to create faces of a shape.

e Topology

Topology is the representation of how the geometry contained within the map is collected
together. In this way, edges between adjacent features can be shared, decreasing the overall
size and cost of the database, and allow easy editing of the bounds between features.

¢ Time Objects

Time Objects are information sets that are representative of data of a specific time period.
Differing sea levels or seasonal data for example could be included via a Time Object.

Figure 4.14 - Analysis of GML Base Objects

For the purpose of the project, will examples such as Time Objects really be needed?
Will all the other various data types etc. actually be used within the project? Let
alone the underlying point that GML is just a file format standard, it does not provide
a way to actually read the files in. If the decision was made to work to the GML
specification in regards to map data storage, it might very well mean an increase in
work to get the system to conform, for very little overall gain seeing as map data
held in GML form is currently unavailable for use. Whether it is used or not, it seems
the project will possibly need to make its own maps, and so it would save many
implementation headaches converting to and from the GML format as opposed to a

custom format.

4.1.3. Raster data

Considering vector map data will be difficult to access for the project purposes, it

may actually be a more profitable exercise to try to mark-up common image based

21

maps into a form more akin to the developer friendly vector format. Raster images
are image files that contain an indiscriminate number of pixels. Each pixel holds a
value reflecting the colour the pixel is meant to take; these pixels are rendered by

the computer in order to produce an image on screen.

As their design dictates that they only hold colour values, they naturally have a
maximum limit on the amount of data they can carry, which is most typically a Red,
Green and Blue channel per pixel (RGB), with an optional Alpha channel making an
appearance within some image formats (RGBA). With this in mind, they will be highly
unlikely to natively support the Meta data requirement previously laid out. With some
arrangement of data, they may be able to hold a basic dataset of information, and

then the application could rely on an accompanying solution to the Meta data.

There are a number of options for deciding what data the images will hold. Firstly,
maps contain shapes; these shapes are usually defined by lines that signify borders
of a feature shape. Sometimes the feature shape will be shaded; sometimes it will
just be an outlined shape. Traditional maps such as the OS maps would sometimes
have markings for names of areas overlapping this essential data. Therefore, even
though the shapes are there, they may have overlapping shapes that too define a

feature.

There are two important points to remember about raster information; firstly a raster
image has no connotations of where or what a shape is, it is just a collection of
colour data. Secondly the image has a limited resolution as to what its accuracy can
be.

4.1.4. Techniques for raster processing

The basic problem of converting raster data to the vector data needed is how to find
the geometry of features represented in the map. There are many image recognition
techniques for shape recognition, but our requirement states we must be able to
know what the overall border shape is. Therefore we need edge information for all of
the shapes in the map, so this could suggest that we need to process each edge one

by one for each shape.

22

Research for this problem went into many areas of image processing, and pattern

recognition, until inspiration for a

solution was found. One way of storing

two dimensional shapes as parts of

images is to store using a boundary

based shape representation (Davies,
1986 [1]). Essentially this uses what is B - 11

referred to as a chain code which details

the movement direction from one pixel ilEE

to another. To store the chain code of a ;

. . . Chain Code:
shape, all that is needed is the starting 0 :lg Ooues 5.6 6.6 7

pixel, and the chain code that details

the path of its boundary.

What is not described is how to produce

a chain code from an image. If the chain

From 'Digital Image Processing’ [2].
code could be generated from a raster Figure 4.15 - Chain Code Shape

Storage

image, it would be a very simple step up
then to generate a vector type shape for the feature. Implementation for mark-up of
a raster map should investigate this possibility.

4.1.5. Defining multiple features

Defining one feature within a raster map is simple. A background colour could be set,
and all different regions of this colour within the image could be treated as a feature.
Multiple features that were neighbours could then be differentiated against by using
differing colours. The image itself would be segmented into regions, with each region
representing a feature (Nevatia, 1986, [1]).

With the available channels Red, Green, Blue and Alpha (RGBA), one or possibly two
at minimum would need to be taken for feature definition purposes. The 'alpha’
channel is made available for extra data to be stored per pixel that may not actually
be drawn with the RGB values to screen. Traditionally it is used as a transparency
mask when rendering the RGB values and as such within image manipulation

23

applications such as Adobe Photoshop® is only visible within a specific viewing

method.

Image manipulation applications will traditionally not render the image with a visible
alpha channel, merely use that channel to control how it renders the RGB channels.
In this vein, it is traditional for height map data to be stored within this 'greyscale’
channel, which can describe the height value at specific points on the map. From an
editor standpoint this is quite acceptable, as the output image is almost treated as

two separate entities, one as a set of RGB channels and one as the Alpha channel.

This idea of treating the alpha value of pixels as height sample values of the terrain,
ties in with how GML handles height data. It too offers a collection of height set
points that contain the height level at a specific location. The raster image in this
case would be describing the height at every point possible within the image; at a

per pixel level.

4.1.6. Vector Data

Vector type data has already been defined as the easiest data format for a developer
to process. Vector data, when talked about in relation to geometric shapes, would
revolve around definitions such as solutions for lines, curves, circles, rectangles and
any other geometric shapes used. This again is mirrored within the GML format.
Vector data itself fits with the 'any' kind of data previously laid out within the analysis
section, and so perhaps if stored as raw data, it too would benefit from being stored
in a similar way to Meta data.

4.1.7. Meta Data

As described within the Analysis, Meta data for the map would require a storage
format that also contained a description of the data within. The vast majority of file
formats are fixed in their specification, and so do not allow for the type of expansion
needed. Requiring a description of the data held within the file, sounds very much
like a property of the Extensible Mark-up Language (XML).

24

XML allows any data to be held within it, but requires that each element of data be
described. This would allow the system to immediately support any nhumber of

developer customisations.

While programming languages such as C# and Java have freely provided interfaces
to read in XML data, some languages such as C++ have comparatively less
successful methods. In the case of C++, there is no language standard
implementation, and while there are a number of third party solutions many have
requirements to use Dynamic Link Libraries (DLL), or other such devices which would
make distribution of the framework to developers (and potentially their clients) more
difficult, as checking of the existence of these components would need to be carried

out before using them.

XML parsers fall into two categories; The Document Object Model (DOM) approach,
which keeps all of the hierarchical information of the data described (one data
element can be the child of another and/or a parent of another), and the Simple API

for XML (SAX) approach, which simply reads off data as it is found within the file [6].

For the benefit of the developer using the framework, a DOM orientated approach
would be more useful, as it would allow the extra option that Meta data could be
considered part of a hierarchy, with elements being children of other elements - this

relationship data would not be lost, but would also be easily accessible.

With a C++ environment though, the large question of how this XML would be read
into the application still remains. After searching around, it was found that 7yrone
Davison's TXF XML file reading API built for students of the University of Teesside
was most suited to the needs of the project. It retains the hierarchical information of
any XML file, provides a simple set of clearly named functions, while also requiring
just one DLL that can easily be packaged together with any framework based

application.

4.2. Shape Tessellation

Once the feature shapes are within the framework’s data, developers will need to be
able to easily access and process them. Whilst processing them for the cause of

25

outputting a mesh, it will be a common request to provide a triangulated

representation of the shape held by features. While this is a relatively simple process

for convex polygons, it is not the case for non-convex polygons.

4.2.1. Convex Polygon Tessellation

A simple convex polygon can have a simple algorithm applied
to it to split it down to a number of triangles (Berg, 2000 [3)).
A vertex is chosen within the polygon, and then diagonals are

drawn to every other vertex within the shape, bar its

neighbours. This is shown within Figure 4.16.

4.2.2. Non-convex Polygon Tessellation

O = start vertex
® =end vertex
e =regular vertex
A = split vertex

V¥ =merge vertex

Figure 4.18 - Vertex Mark-up of a Non-convex
Polygon

into Monotone pieces (Lien & Amato, 2004, [3]).

The technique to break the polygon up into
monotone pieces is far simpler than trying to
produce a number of convex polygons to then

tessellate. It begins by marking up the vertices of
the polygon into different types (Figure 4.18) then
using this type to split the polygon into y-monotone
pieces. A y-monotone piece is defined as a polygon
of which, if the edges are traced from the top most
vertex downwards, the edge does not travel back

26

Figure 4.16 -
Convex Polygon
Tessellated

Non-convex polygon tessellation is
considerably more complex than
that of its convex polygon
counterpart. Many solutions strive
to convert the non-convex polygon
to a number of convex polygons
first (Berg, 2000,[4]), then use the
simple tessellation approach
already defined. However by far
the simplest method found, is to

break the non-convex polygon up

Figure 4.17 - Non-convex
Polygon Broken into y-
Monotone Pieces

in an upwards direction at any point. This approach even allows for complex non-

convex polygons (polygons with holes within them) to be tessellated.

Once the split into y-monotone pieces is complete (Figure 4.17), tessellation of the
polygon can occur. The tessellation process of the individual y-monotone pieces
themselves is comparable in complexity to that of a convex polygon, so overall this

allows for the simplest solution found for a generic polygon tessellation algorithm.

4.3. Testing bounding with Feature shapes

Developers may need to carry out intersection tests of one shape with another.
While shapes are a series of edges, at first it might seem applicable to carry out
plane intersection tests with each individually. This technique will only work with
convex polygons however. To support non-convex polygons, it is recommended that
the shape be tessellated using the technique described within Section 4.2.2, and

then any intersection calculations be carried out on the resulting set of triangles.

4.4. Tools choice

The framework will need to support inclusion within a wide range of applications,
which may be across a multiple number of platforms, and in a variety of languages.
Supporting this range of requirements is a huge task, and so for the scope of the
project, the primary platform of Windows XP has been chosen. This should allow the
maximum number of applications to be able to use the framework. While the
framework could no doubt be implemented within any development environment, for
the project, C++ will be used due to the higher experience level of the implementer
in this language. Programming will take place within Microsoft Visual Studio .NET
2003.

The final deliverable to developers could be developed as a DLL, which would allow
for smaller sized executables from the developer and would abstract the developer
and framework source code completely. This option means whichever computer
system the developer's application is run on, will also need the framework's DLL
available to the system to be able to run correctly. It is deemed that this is again too

large a drawback, and so the project will aim to produce a library file, that can be

27

linked at compile time with the developer's application. This option is far simpler for
the scope of the project, at the minor expense of some potential redundant code

within the application.

28

5. Design

5.1. The Underlying Framework

So far, a number of points have been collected about the structure of the software
application framework for the map reading application. Expandability is at the core of
all design considerations, closely followed by the ease of use of the product from a

developer perspective.

To meet the first requirement of expandability, the design must be modular.
However to meet the second consideration, modularity must be carefully produced, it
must not modularise the framework for the sake of modularising it. It must also not
make modules too large. To provide functionality to the developer, but for them to
take advantage of that and be rewarded with having to re-write functionality that
was provided in the default place but is now not available to them, is just as large a

design failure, as to not provide expansion opportunities at all.

Therefore default functionality must be provided that would be of use to a developer,
but this functionality must be cut into small scale modules, of which a developer
could potentially override any property of the system's actions. This core design

requirement must be adhered to if the framework is to be a success.

Copy held in
/|
Map —’. Computer’s — Export
Read in Process Data
memorv

Figure 5.19 - Map Reading Process

The two core actions of the requested framework are to be; reading in a map, and to
process this data into a developer chosen output as shown in Figure 5.19. This
immediately suggests two modules for the framework, one that reads in map data,
and one that uses this map data to export whatever the developer requires. To be
able to export what they want, the developer must be able to easily query this data
to a point where they can filter it to the appropriate conversion process required.

29

This situation presents a slight practical problem however, if there are just two single
modules such as these, then how would the system enforce a standard 'map data’
that once read in, could be passed to the export module. This is an important point
as the export module will need to rely on the map data being defined in a preset
way, to be able to process it. With developers able to override the import and export
modules as they please, there will be potentially an infinite number of possible
combinations between the two. Therefore there is potential for an infinite number of
problems with compatibility between the two types of module if the way in which

communication occurs between the two is left for the developer to decide.

There are two realistic solutions to this scenario, the first is to have no extra module
and leave the requirement as is. This would require the reading module to pass the
data direct to the export module in a clearly defined way. This could either mean
that the developer must store the data somehow while reading it in, and then pass it
all at once to the export module, or they would pass each element’s data to the

export module as it is read by the import module.

The first solution would mean more responsibility to the developer to store the data,
translating into more work for their implementation. The second would dilute the
import, and export processes, with the two happening at the same time. This could
make the entire map import and export process more confusing than it needs to be,
and suggests that a cleaner solution could be used. Keeping the module count at
two, seems to either require the developer to create too much functionality
themselves, or means that the framework design is too complex.

The second solution would be to introduce a framework storage solution to the map
data. This would mean that the read module would run, and would fill up the
'framework storage' module, which once complete would then signal for the export
module to run, and process the data within the framework storage. Developers
would now not need to worry about any issues with storage. This is essentially a
solution to the problem laid out within the first option of the first solution detailed
above.

30

Overall, there are now three main modules within the framework design as seen in
Figure 5.20. At this point their inner workings need to be fleshed out. Seeing as the
framework storage is the middling ground of the two others, and the only one which
would not require expansive properties it seems a sensible place to start. Before
work began on the framework storage design, work would need to begin on the

design of what the storage module would need to hold.

—

Features Features
Input Storage Export

Framework Framework Framework

Figure 5.20 - Framework Modules and their Relationship

5.2. Definition of a Feature

As described within the Analysis, maps are collections of features within a specific
area defined by the map, therefore it can be concluded that the only data the map
contains are these features. Our framework storage is essentially our in-memory
vector format collection of the features within the map. The framework storage,
stores these features that contain properties as defined in Figure 3.8.

The Feature object within the framework will therefore have a make-up as described

in Aigure 5.21.

Feature
-m_shape Shape
-m_metaData Fm_edges T E—
=) EdgeVector
+3hape{} c:}_‘_‘—'—-—-—-_._._'“"—su"f“':'? i EdgeVectorCurveBezier
+MetaDatal) Fm_boundingAABE [| L .

- -m_basisFunctionSamples
+SetShape() ‘+HasSurface() : baal +SamplaEdgea) .m_basisFunctionDerivatives
+SetMetaData() +SetSurface() =

+GanerateRandomPoints() +SamplaEdg_a[] :
+SampleHeight() +SampleBasisFunctions()
+SampleMNomal(} +SampleBasisFunctionsDemvative()
+AddEdoeSection() EdgeVectorLine
+NuurberDlEdgp:~9{} Cm_start
MotaData +MumberOfSactions() [
Cm_xmiData :EdgaSactinn{} 45;.n1pleEdge{)
T GelFioal]) Texanlalef) +SetStartEnd(]
+EetStringl) +GetStartEnd()
+HEetWector()
Surface
SurfacePointSample
+SelControlPoints() -m_uCurve
+Sample() -m_vCurve
HSampleMNormal() -m_controlPoints
=m_width
_m_height
-CreatePatchi()

31 Figure 5.21 - Design of a Feature

5.3. Framework Storage Module

The framework storage module has been defined as a collection of features gained
from the map reading process. It is merely a collection object, relatively simple in
nature, but there to force any developers using the framework to conform to the

framework's definition

¢ Add Feature

of what a feature is, _ _ _
This method will be needed by the input module.

and how import and o Get Number Of Features

export modules This method is needed by the export module to be
should pass their data able to know how many features it must process.

to one another. ¢ Get Feature

This method will be used by the export module so

ConSIderlng It must that it can access a feature in the feature list to

be used by the two process them.

different modules, the Figure 5.22 - Feature List Methods
methods required of

this object can be deduced.

The object diagram of the Framework FeatureList

storage can be deduced from Figure I et

+Add Featura()

5.22 as shown in Figure 5.23. 1t has +FeatureEntity()

=MumbarOfFeatures()
also been decided that as the

framework storage is essentially a list of

features, the module will be renamed to Feature

. —

Feature List. _::,f.,igzma
+Shape{)
+MetaDatal)
+SetShape()
+SetMetaDatal)

Figure 5.23 — Feature List Design

5.4. Framework Input

The only interface that the input module will require of the Feature List functionality
described in Figure 5.22is the 'Add Feature' method. This suggests that, despite

previous assertions, it really does not matter what form of implementation the input

32

module takes from the framework’s perspective. The framework does not need to

force the developer to make their input module take a specific form.

The only requirement will be for the developer to provide the Feature List with
complete Features using the ‘Add Feature’ method. This means that a developer has
as much freedom as possible when implementing an input module for reading in a
map. By following this design decision there are now no requirements for the
developer to produce an input module conforming to what the framework has pre-
defined.

»

»
|

Developer Features Framework Features Framework
Made Input Storage Export
Module

This does not mean that the project will not provide a default implementation of an
input module of its own, as a bare basic requirement to provide default functionality
to the developer is to be able to read a map in. It does however mean that the

design shown in Figure 5.20 has changed, as technically there is no requirement for

a specific input module for the framework as now seen

in Figure 5.24. Exporter

-m_EXporiers

+Ragi sterFea llJrEExn-:lrlert]
+CaonvertFeaturelist{)

5.5. Framework Output

The starting point of the export module will be the ?

Features contained within the Feature List module. A FeatureExporter
-m_filterMetaData

+FeaturelsMatchl bool
want to do with the Feature List? A developer will want +ExportFeature()

question that must be asked is what will a developer

to use the data contained within a feature to influence T

how they handle this feature in the export process. Developer's Exporter

Depending on the feature’s data, it will be processed ina | [

number of different ways, to the preference of the

developer. Figure 5.25 - Exporter

Design

33

This suggests that an export module will need to be able to filter the Feature List, by
comparing each feature’s data values with certain values that the developer decides
are appropriate. Once the feature search is complete, the developer would like to be
able to use a specific overriding method to process and convert them into what is
required. The export module whilst conforming to the design laid out in Figure 5.25

has overall behaviour keeping to the points within Figure 5.26.

e Process the Feature List, finding features that hold matching properties to the
developer's request.

e Match these features up with the developer's proposed exportation method.

Figure 5.26 - Export Process Behaviour

5.6. The Proposed design

With all modules now considered, the framework design overall will take a form as
described within Figure 5.27.

34

Tom Hill Creating A Virtual World Described By
Custom Map Data

Developer's Import Module

Feature List Created by Developer’s
Import Module, and passed to

FeatureList FeatureExporter
— Exporter po Developer's Exporter
-m_features exporters : [-m_fiterMetaData =
+AddFeaturs() "RegisierFealureExporiar]) [+Fealurelshatchi) - bool
[+ FaatureEntty() +ConveriFeatureList() [ExpartFeaturel)
+MumberOfFeatures()

Feature
tm_shape Shape
-m_metaData
i Fm_edges
+Shapa() ‘::‘*—__‘—m_surfaca Edpshucior EdgeVectorCurveBezier
+MetaDatal) Fm_boundingAABE [[+—[m_basisFunctionsamples
:Se:hsﬂh?apsl?t +HasSurtace() : bool +SampleEdga() -m_basisFunctionDerivatives
SelMetaData() +SetSurface() {E. +SampleEdgel)
+GenerateRandomPoints() +SampleBasisFunctions{)
+SampleHeight() EdgeVectorLine +SampleBasisFunctionsDarivativa()
+SampleMormal() ‘m stant
FAddEdgeSection() e
+MumberOEdges() —
MetaDato +NumberQfSactions() [+SampleEdger)
=m_xmiData +EdgaSaction() Hmrirann
= +Tesselate() [+ GetStartEnd()
HaetFloat])
HGetStringl)
HGetVector)
Surface SurfacePointSample
H_uCurve
: -m_vCurve
:g::;:{t;ol?mms{} m_controlPoints
Hm_widih
+SampleMormal() -m:hsight
FHCreatePatch()

Figure 5.27 - Complete Design

5.6.1. Observations

From a merely curious glance, it is would seem that the proposed design described
within Figure 5.27 and any implementation of just this design, would not actually
provide a significant quantity of work for the entire scope of the project, or of

developer aid to the core problem identified by the project.

At this point, it is obvious, that while the framework is useful as a general guide to
helping developers processing map data, there must be more problems a developer
would face while implementing. If this is the case, then the real work will involve
providing solutions to these individual problems within the framework that the

developer can realistically use.

35

This theory is further followed through, when observing just where the most amount
of functionality seems to be located within Figure 5.27. The majority is located

towards the lower objects in the hierarchy, focused around making the storage, and

access of feature data easier for the Side note: It must be noted that

developer to carry out. This supports due to these observations the project
changed direction from that originally
laid out in the specification of the
framework would appreciate smaller project within Appendix A, to focus
not only on trying to solve individual
problems in the overall process, but
problems with the process. to that of automatic asset creation.

the notion that developers using the

solutions to help solve individual

5.7. Exploration of Helper functions

The primary focus for the project is for the processing of map data to become easier
for a developer. It has been found that a solution for developers would also need to
include solutions to problems when importing and exporting the map data. This
‘helper' functionality will need to become part of the framework itself. As defined in
the analysis, the most important area for added functionality would be to help
convert a feature's geometric data into forms a developer could easily use.
Tessellating the shape or even just allowing easy access to the shape itself or any
Meta data of the feature would be high priority in helping the developer.

All of the discussed functionality above could be held in per-feature methods, and as
long as the developer could access each feature they could use these methods.
However, helper functions to help process and convert the largely two dimensional
features, into three dimensional models, represented as triangular meshes would

employ more functionality.

By breaking down the core process of creating a mesh, and providing a pragmatic
solution to the process would help inject a quantity of work into the project to match
its required scope.

Focus should also be given to the input side of the framework; a generic solution to

be able to read in a map stored in raster data would be extremely useful in initially
integrating the framework into an external application.

36

5.8. Finding features on a Raster Map

5.8.1. Recognising shapes

To recognise the shapes on a raster map, to recognise the features contained within
it, regions of equal colour will be assumed to define each feature. By moving
upwards through the image one scan line at a time, searching for a pixel of a not-
yet-encountered region, it is safe to use the shape tracing algorithm described in
Section 4.1.4 as soon as a pixel matching is found. Once the trace has reached its
start point, the feature shape has been recognised. At this point all pixels within the
shape are considered part of this shape, and can be removed from the future search
to find a start-of-edge pixel.

The output chain code will be easy to process to find the corner points; a corner is
simply each part of the chain code which changes from the previously defined
movement directions. This chain code, in conjunction with the corner points can be
used to create a shape for the feature constructed entirely from straight line edges.
It is feasible that the shape could also be constructed from other line types, such as
curves; however this would need a more detailed chain code analysis by the

software.

Once a shape is recognised, the rest of the image would still need to be analysed. To
do this, the algorithym will pick up from the start pixel, and continue its search along

the scan lines of the image.

5.8.2. Pairing Up Meta data

While the features are defined within the raster data contained within the image file,
the Meta data will need to be supplied in a partnering XML data file. As seen within
the OS Master Map, locator information will be needed to match up any Meta data
defined, to the features within the image file. The locator decided to be used here, is
simply a pixel coordinate within the feature the Meta data belongs to. The framework
should then be able to match the two up relatively easily. This also means that from
a user perspective of defining the locator information on a Meta data element the
process is much simpler, as it is relatively easy to find a pixel coordinate from an

image.

37

5.9. Creating a mesh

With the analysis of what a feature consists
of, it cannot be concluded that there is an
immediate way of generalising the creation of
a mesh to represent it. There is one shape
that represents it in two dimensions in the
map plan, and there is an undefined amount

of Meta data used to describe unknown

attributes.

As shown within the Analysis chapter, it
seems that the mesh creation must treat the

Figure 5.28 - Perceived Future
Output

feature as a set of different zones. These zones are then to be 'decorated' with

whatever detail is needed to be put onto that particular zone of the feature. Both

Zone Makers and Zone Decorators that encapsulate this functionality should be

thought of being able to be overridden by the developer.

5.10. Mesh Maker

The Mesh Maker is intended to be used within the per-feature export functionality of

the framework.

To begin with, all that the Mesh
Maker has is a feature to build from.
This means it has both shape and
Meta data information. Within the
export component of the framework
for this feature type, the developer
must register different Zone Makers
to build the mesh to meet the
specification they require for the
output mesh. Once picked, the Zone
Makers are passed to the Mesh

¢ ‘Add Zone Maker’
Needed to register a Zone Maker with
the Mesh Maker

¢ ‘Build’
Executes all of the Zone Makers in
order, orchestrating the Mesh making
process.

¢ ‘Get Mesh’
Some form of method to allow the
developer to extract the final created
mesh from the Mesh Maker.

Figure 5.29 - Mesh Maker Functionality

38

Maker in the order that they are to be used to create the feature’s mesh, from its

base through to its top.

The Mesh Maker must control the creation process, by processing the Zone Makers
in the correct order, and then collating the output of all Zone Makers into the final
output mesh. From a developer perspective the Mesh Maker will be the object giving
them the mesh they want. The Mesh Maker will therefore have the functionality as

described in Figure 5.29.

5.11. Zone Makers

Each Zone Maker will be given the feature data for it to create its section of mesh. A
Zone Maker is expected to trace around the vector format edges of the shape of the
feature one by one (sampling them into straight faces in the case of curved based
edges). This will allow each Zone Maker to create a set of faces for the mesh which
match the shape of the feature and conform to any Meta data attached to it. The
output of this will be to create a basic frame which defines the mesh volume for this
zone (Figure 5.30).

These basic frames

may be shared between

different types of
feature, for example a
wall zone could be
shared between a
house and a shop. To
differentiate between

features, further areas

of detail would need to

be added. While this Figure 5.30 - How zones fit Together
detail could form part of the Zone Maker, it makes no sense to add further
complexity to this object. Instead it would make sense to be able to add custom
areas of detail to this one zone, promoting code reuse, and meeting the
expandability requirement of the framework.

39

A Zone Maker would be in charge of directing the process of adding this detail to the
zone. Zone Decorators would be held per Zone Maker, which add specific parts of
detail to the zone. Each Zone Maker would need to mark-up the faces which could

have detail added to them as an Adorn Surfaces.

By taking this route, the design would allow developers to use one Zone Maker for
the house/shop scenario described above, and then multiple smaller areas of Zone
Decorators, which would mean less code duplication, and less overall work for the

developer.

5.12. Stripping for the Decorator

As discussed within the analysis chapter, a zone’s Adorn Surface needs to be split
into generic sections that can be treated the same by the Zone Decorators before
the decoration process can be begin. It must be the responsibility of the Zone
Makers to split their Adorn Surfaces into these sections, and then give them to the
Zone Decorators to act upon. The form that these sections take must be found, so
that a specification can be made for the Decorator functionality.

Regular Shape Irregularly Shaped
Face Stripped Face Stripped

Figure 5.31 - Marking up Regular & Irregular Faces

The first attempt at a process would be to merely give the single Adorn Surfaces of
each zone entirely to the Zone Decorator to do as it pleases. While this allows
freedom, certain situations do not hold up to this approach. For instance, a zone is

not defined as a single floor of a building, as such the Zone Decorator would be

40

charged in figuring out how it would deal with multiple floors if given a Adorn
Surface of the mesh. This pushes more functionality onto the decorator, increases

code duplication and decreases expandability of the framework.

On a second run, this problem could be recognised, and rectified by splitting the
Adorn Surface into floors (in the building's instance), or 'Strips' in @ more generic
instance. Thereby the Zone Decorator would treat a Strip as its own; it would be
allowed to do anything it wanted to, over the whole vertical distance of the Strip.
This removes a requirement for Zone Decorators and leads to an easier set of

expansion possibilities.

However, what happens if the face that the Zone Maker wants to pass to the Zone
Decorator is not square, but irregular (perhaps the mesh is to make a pyramid). Well
by putting in a requirement that the Strip given to the Zone Decorator is rectangular
and has a vertical edge perpendicular to the straight base edge of the Adorn Surface,
this problem is eliminated. As shown in Figure 5.31 there is a slight problem in this
approach of potential space in zone faces that cannot be decorated, but it is an
adequate solution for the purposes of the framework at the current time.

L]

Free Reserve Free Free
Area Area Area Area

Figure 5.32 - Reserving Areas on a Strip

The final situation that may break this approach will occur when there are multiple
Zone Decorators acting on the same Strip. What decides that they won't place a
detail feature overlapping another already there? Could there be situations where
doors and windows overlap? The Strip must be able to be queried to see if details

41

have already been placed within areas of it (Figure 5.32), so that future decoration

will not unwittingly collide with the decoration already applied.

5.13. Decorating the Strips

As multiple decorators will work one at a time on a zone’s Strips, there will be a
priority list determining their order of execution. To simplify proceedings, the order in
which a developer registers the Zone Decorator with the Zone Maker will be the

order in which they are executed.

As the decorators are adding detail to an automatically created mesh, they too
should have a level of automation in regards to their placement on the mesh. While
some detail features such as doors, might have a specific location on the mesh that
they must take, others such as windows might be too costly to accurately define
each location.

Figure 5.33 - Tessellating a Strip

Therefore Zone Decorators would need to fall into one of two categories; Fixed or
Fill. Fixed decorators would position their detail at a specific location within the Strip
of mesh face, while fill decorators would take any available space in a Strip and fit as

many of them in as possible.

Naturally fixed decorators would have a higher importance than fill decorators, as
their defined location denotes that the detail they give to the mesh must go there.
Therefore Zone Makers would need to execute Fixed type Zone Decorators first, and

then Fill type Zone Decorators on the remaining spaces within the Strip.

To deal with any tessellation issues, the decorator should be responsible to tessellate

the mesh for its own area of the Zone Strip that it modifies (Figure 5.33). While a

42

rather crude approach to a solution of the problem, it is flexible enough for the
purposes of allowing the decorators to modify the mesh, and makes sure that the

mesh is closed, with no holes.

5.14. Keeping Surface Information

To allow for detailed visuals to be supported, the final produced Mesh must be able
to be constructed of a number of different surface types. Supporting texturing for
example would allow for a vast range of detail to be supported. Therefore when all
Zone Makers and Zone Decorators are executing, they must have access and
calculate any texture coordinates available for the vertices of the mesh. They must
also be able to add new surface types if required.

43

Tom Hill Creating A Virtual World Described By
Custom Map Data

6. Testing

6.1. Proof of Concept

The first step when testing a framework aimed at being used by developers is to see
just how suitable it is for an external developer to use. Therefore, a test bed
application that was built to emulate the process an external developer would go

through was created.

Figure 6.34 - An Example Scene
This application uses the implemented framework to read in a map that has its
positional feature data stored in raster form and attempts to then recreate this as a
set of meshes to be viewed in real time. This image file is paired with an additional
XML Meta data file which was used to store all of the additional information for the
map features. From here, the application uses the image reading component of the
framework, to extract the individual features, and then uses this feature data to use
a number of the different asset creation aspects of the framework.

The application itself can be found on the CD-ROM accompanying this document,

while further information on how to use it is provided within Appendix C. Overall

44

during the testing process three major aspects were attempted to be tested, these

are described within the following sections.

6.1.1. Raster & Meta data Reading of the Framework

Primarily testing within this area focused on whether the shapes displayed within the
map would have equal representations when processed and converted into meshes
for the purposes of the application. All manner of polygon shapes were tested,
including a variety of non-convex polygons (of which due to time restraints
tessellation could not be implemented). Meta data which defined the height of each

feature was used to create a wide variety of outputs.

Limitations here were polygons that had one pixel wide dimensions in the raster
map. These depending on the situation would render out as free standing faces
within the world, or were not rendered at all. All features should have dimensions of

2x2 pixels or above.

6.1.2. Ease of use of the Framework Architecture

Framework wise, the process of inputting and processing a map was relatively
simple. The requirements from a developer in the test application, was to create an
instance of the Image reader, pass it the image and Meta data file names. This then
analysed the data and organised it into per feature vector type data. From here, the
developer was required to provide a number of export objects to process this data. It
was here that the majority of the developer’s effort went, but if using the provided
Zone Makers with the Mesh Maker functionality, even this process was relatively
small. Overall the architecture was useful, and did not prove too large a burden to

integrate within the application.

6.1.3. Mesh Creation functionality

Mesh creation proved very modular, and simple to set up. Unfortunately it was the
creation process of the Zone Makers or Decorators that proved rather cumbersome.
While creating, and introducing custom Makers into the system proved simple to

accomplish, actually creating new ones was rather lengthy.

45

Despite this, a variety of different looking meshes were able to be produced, a
selection of which can be seen in Figure 6.34. Many use the same mix of Zone
Makers and Decorators, but just change their Meta data values, even this approach

can be used to create a variety of meshes.

6.2. Testing for the future

The framework has been designed from the beginning to be a third party solution to
developers creating a wide range of applications. If this were to be a commercially
available product, there is obviously a very wide range of testing opportunities that
would need to be taken up to guarantee the framework correctly functioned at all

times.

Part of the answer to this requirement would be to implement an automated testing
framework, which would be run when any new functionally was added and would

check that it would not be of detriment to the framework as a whole.

The subjects that automated testing solutions for software engineering projects
normally concentrate upon are; Build and Testing. For this reason, the overall system
is called a Build Verification Test solution.

6.2.1. Build Tests

The build process of the testing is designed to test any code changes made to the
framework. It checks for things such as compile or link time errors. A successful
output from this stage would be a fully built product. If the test is not successful, the
basic product will not exist, and further tests cannot begin.

As the framework is a third party solution, this stage must also test whether there
would be any problems with an external developer linking the product with their
application. For this stage it would be useful to have a number of example test
products to use, to see whether they build with the changes made to the framework.

46

6.2.2. Automated Testing

This stage concerns itself with the actual functionality of the framework. Test
programs will be run which will be designed to use a certain system within the
framework. Each test would be different, but an acceptable range of subjects to
focus on, would be those tested for the test product of this project described in
Section 6.1. An excellent idea here would be to take some of the developer’s projects
and use them as test beds. This would allow for testing to directly assess the impact

of any changes upon the developers using the product itself.

6.2.3. Ease of use

While many subjects can be tested automatically for the framework, developer ease
of use of the system is something that can only be answered by the developers
themselves. To gain this input into the process, facilities would need to be in place
for a developer to be able to communicate their thoughts back to the framework
team. Tools such as online feedback forms, or even simply an e-mail address would

work well.

47

7. Evaluation

7.1. The Product

The test application produced for the project was not as complex as originally
envisioned. While not comparing to professional products such as OS Master Maps,
in terms of data complexity, it did at least explore the area of automated mesh
creation. It was in this area it was hoped that the product would be more in-depth,
unfortunately only a limited number of Zone Decorators were implemented
(Windows and Doors). However, completely closed meshes were able to be created

as standard, which can be seen as a success.

However overall, it is pleasing how the final product reproduced map data in three
dimensions, and a true indication of how a more advanced product would have a

place in the asset creation process of the future.

7.2. The Project

When originally conceived, the project’s potential scope was incredibly huge. At first
this proved somewhat daunting, and research to find a path was unfocused within
this broad area, and so moved slowly. This resulted in lower motivation, and fatigue

in relation to the work flow of the project.

Eventually focus was achieved, and work began upon the framework’s structure, this
proved beneficial, as the project could be visualised easier, however it was less clear
in what goals the project should take forward, and so this resulted in the project still
moving at a sluggish pace.

A better overall approach would have been to try not mixing the research and design
stages. By mixing them, focus was continually taken away from the project work,
and seemed to dart off into different directions. To have set clear concise smaller
scale goals after the research stage had completed, would have meant that the most
important parts of the project were worked upon in the correct order. As it was,
while working it seemed like some parts of the project were not completed in the

48

most efficient, and inspiring (in the case of getting something simple to later build
upon) manner, and this may have affected the project in some ways, in relation to

the test implementation product, and the framework specification.

This should not detract from the considered success of the specification for
abstracting subjects so large as mapping and asset creation however. While the
implementation further proved how the analysis and design approach for the
framework was successful. The work completed is definitely a firm basis for further
work within this field, and could be especially built upon for the asset creation

aspects of the project; this factor in particular can be seen as a success.

49

8. Recommendations

The total possible scope of the project is massive, obviously not all subject areas
could be explored, and so a number of areas have been identified that could do with

further exploration in the future.

8.1. Integrate ‘True’ Map data

Having data from the real world would mean comparisons between application
output and the area the map represents would be easy. It would also mean that
creating test data would no longer be a chore, as there would be an extensive

selection to choose from already.

8.2. Increase number of Zone Maker & Decorator Types

Creating a large catalogue of Zone Makers and Decorators for the application would
mean that more areas of algorithmic asset creation could be explored. For instance,
there are many different types of roof left unexplored by the project, how to create
all of these different types of roof is a huge subject area to explore by itself, but
when considered with all the possible types of zones or decorators the scope is

unlimited.

8.3. Different types of Test Applications for the Framework

Currently there is only one application which tests the framework for the purpose of
displaying the map’s contents in real-time. Perhaps an application which converts the
mesh data into a modelling file format for a 3D modelling package would be a
worthwhile test for the system. Other applications which perhaps do not even focus
on the geometry of the map, but on the Meta data could be other avenues for

continued investigation.

50

8.4. Map Features that do not Represent Physical Objects within the
World

Perhaps of interest to games, map features could be used to define such things as Al
routes, areas where enemies can spawn from or any other game specific feature. An
investigation into how the concepts of automatic asset creation could be applied in
this context may be a worthwhile cause.

8.5. Implement Non-convex Polygon Tessellate

By adding this functionality to the system, it would instantly make it able to process
a much higher in complexity amount of possible map data, and produce a wider
variety of output meshes.

8.6. Investigate how this technology affects the art pipeline

The most important further work in this project’s priorities would be to investigate
how using a two dimensional map contained within an image, and accompanying
Meta data could be used to affect the art creation process when creating a virtual
world. Could a successful implementation be created where the whole world was
instantly modelled, or would a simplified version, which was then manually expanded
upon by an artist have to be settled for? How much time would it really save the art

pipeline in a production?

51

9. Conclusions

The investigation into a solution for software developers to easily integrate map data
into their own applications proved to be a fruitful exercise, which produced a design
for a framework that allowed expandability of its functionality to support as many

different applications as possible.

Maps were defined to be a collection of features, with each feature consisting of a
shape (containing the geometric shape, and any point sampled height data) and an
undefined amount of Meta data. This Meta data was defined as any custom property

unique to a single feature.

The framework produced was defined to have three separate processes; input,
storage and export. The import module is entirely within the developer’s
responsibility in how they construct it, as it adds single features to the storage
module. The export module will then process the features within the storage module,
filtering them based on what types or values of Meta data they contain. Once a
match is made, this feature is processed using the developer’s defined conversion

process, and the feature data can be used to create an asset.

It was found that for feature data to be useful for the developer, a number of query
methods would need to be provided, to allow them to use the data contained easily.
Without these, there would be little benefit to using the framework, over creating an

in-house custom solution.

It was found that to generalise the mesh modelling process, it was essential to break
the geometry up into common zones. This was because these common zones, would
likely share common methods to create them. By separating these methods up in
this way, and encapsulating them into a ‘Zone Maker’, it not only allowed for
reusability within mesh creation, but considerably simplified the concept of creating

the mesh itself.

Extra detail within the mesh was handled by ‘Zone Decorators’, which are used to fill
each zone with decorative features (such as Windows). Again these could be

52

completely overridden by developer functionality, allowing for an infinite amount of

expansion and possible outputs.

A proof of concept application was created, which read in basic map data, consisting
of an image depicting the geometry of the world, and an XML file containing extra
Meta data for each of the features contained within. While not producing features of
an extreme detail quality, the application provided opportunity to see the potential of
different mixes of Zone Makers, Decorators or input values to produce a wide range

of different output meshes.

The work here should be seen as a basis of for further work within the realms of
asset creation. Recommendations for the subjects of this work are provided within
Chapter 8.

Overall this project has concluded that the idea of using a map as a simple-to-define
blueprint for a much more complex world, is a very powerful one in the fight to lower
asset creation timings for virtual worlds, and is almost certainly worthy of future
work dedicated to it.

53

10.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Young & Fu

Bernd Jahne

M. de Berg

J Lien & N Amato

The Handbook of Pattern Recognition and Image
Processing

Chapter 9, “Image Segmentation”, Pages 215-232
Chapter 10, “Two-Dimensional Shape Representation”,
Pages 234-235

Academic Press, Inc., 1986

Digital Image Processing, 6" Edition
URL
Springer, 2005

Computational Geometry, 2™ Edition
Chapter 3, “Polygon Triangulation”, Pages 45-61
Springer, 2000

Approximate Convex Decomposition of Polygons
Texas A&M University, 2004

Open GIS Consortium Geography Mark-up Language (GML) Implementation

Dietel & Dietel

Paul Bourke

Specification
www.geospatial.org/specs
OGC, 2005

XML: How to Program
Prentice Hall, 2001

Piecewise Bezier Curves
astronomy.swin.edu.au/~pbourke/curves/bezier/
cubicbezier.html

Viewed Feburary 2006

54

Appendix A - Specification

Creating A Virtual World Described By Custom Map Data

Synopsis

The major objective of this project is to create a software framework to aid asset creation. The software
will form a part of the asset creation pipeline, it will read in map data, which could come from the real
world or could describe a fictional place, and convert and represent these in a form that will be useful
for a number of applications to access. The most desirable of which will be to recreate the map into a
three-dimensional virtual world. The project will allow the exploration of the problems and solutions
involved in an asset pipeline that tries to support as much functionality as possible.

Together with this basic ‘surface/area definition’ in the map data, Meta Data will be used to add extra
information to the features on the map and further define them. This Meta data will be entirely
customisable, allowing a user to use the tool in any which way they please. Coupled with user-definable
data, the map features themselves will be able to be accessed in custom ways, by designing the system
to be as generic and expandable as possible, with the aim that a developer could take the system and
modify it to suit their needs perfectly.

With the framework, it is then desirable to create an application using it to use the system from a
developer’s perspective. This application will focus on testing the asset creation stage, and not how it
uses any data produced.

Design of the framework will take the process of fitting the technical requirements laid down, and then
trying to see if they fit any theoretical situations that may occur. Once this is deemed successful, the
same process will be applied in its development. Development will follow the design, but will see a
process of adding in different map features to the system and tracking whether they work or not. If
they do not work, the system will be re-evaluated and allowed to evolve.

Minimum Objectives

- Create a framework that is clear and easy to understand, that can handle as many forms and
situations of Meta, and map data.

- Create a demonstration application that will show the process in which the framework can be
used.

- Meta data from the framework must be able to be fetched, and filtered easily by the host
application.

- Map data to contain workable examples of at least height data, buildings, surface types (grass,
concrete, etc.), roads, and ‘special features’ (such as statues, libraries, and basically any sort
of unique feature).

Schedule

9™ November 2005 - January 2006

Research and development of ‘map reading’ features and heavy development of Meta data aspects.
Begin testing of framework, by introducing one map feature at a time to a test application (built onto
it), following it through the framework, making use of it by displaying the new data in the application,
and then continuing this process for as many features as possible.

January 2006

Interim report, fully evaluate framework by beginning final phase of ‘test application” development. Test
application should now take as many features as the map data provides and reproduce the location
described in 3D. Test application should be completed.

February 2006 - Hand in 3 April 2006

Main project should be complete, development of ‘extra’ features to further test and demo the asset
pipeline/framework (expansion on the number of features that maps can support for example).
Complete final report.

55

Appendix B - Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

8]

A Brodersen

M Bertram
X Tricoche

H Hagen

W Niblack

A Fournier

T Dey

M Neal

C Marshall

Real-Time Visualization of Large Texture Terrains
University of Aarhus, 2005

Adaptive Smooth Scatter-data Approximation for Large-
scale Terrain Visualization

University of Kaiserslautern, 2003

Ordnance Survey
www.ordnancesurvey.co.uk
Viewed November 2005

An Introduction to Digital Image Processing
Chapter 9, “Image Segmentation”

Chapter 10, “2D Shape Representation
Prentice Hall, 1986

Triangulating Simple Polygons and Equivalent Problems
University of Toronto, 1984

On Good Triangulations in Three Dimensions
University of Purdue, 1991

A Software Tool and Techniques for Converting Map
Data into Object Orfentated Representation
University of Wales, 1998

Making Metadata. a study of metadata creation for a

mixed physical-digital collection
Xerox Palo Alto Research Center, 1998

56

[9]

[10]

[11]

[12]

J Beaujardiére

L Barnett

T Davison

Microsoft Corp.

The NASA Digital Earth Testbed
NASA, 2000

A "Roads” Data Model: A Necessary Component for
Feature-Based Map Generalization
3M Company & University of Minnesota, 1997

University of Teesside Intranet
outranet.scm.tees.ac.uk/users/u0018196

Viewed January 2006
MSDN

msdn.microsoft.com
Viewed March 2006

57

Appendix C - User Instructions

Initial Instructions
To run the supplied copy of the test application, insert the accompanying CD-ROM.

Wait for the autorun to begin. If this does not happen, please ‘explore’ the CD-ROM,
and open the file named “readme.txt”. Follow the instructions inside this file to begin

running the application.

Background on Application

The application is designed to process a number of example maps. It has a number
of basic commands to aid the viewing of the produced meshes. Exact control
configurations are available on the CD-ROM, but options to render the scene in

wireframe or solid are available, as too are back face culling methods.
There are a number of example maps to view. To view the map, please open the
corresponding ‘.tga’ file in an image editor of your choice. To view the Meta data file,

please open the *.xml’ file.

To get a taste of what output awaits, without running the application, please refer to

Appendix D.

58

Tom Hill

Creating A Virtual World Described By
Custom Map Data

Appendix D - Screenshots

The following are a selection of Screenshots from the test application. Shown are the
original raster maps, and the output in either solid or wireframe mode

5

5 ;nfm(ﬂﬁﬂlj mlmumj

==
LY
=
e

|
P!

I

I Ed o e

A

i,
5

i

\Z

ﬁ“ﬁ‘il “fuﬁﬁp‘iun}hmf

L=

= o % Tl &
S umw:jmfr*.».:ir:!f*ﬂ'*)

g

rL

[

|
i

)
e

i
E

Pl

7
i

i
=&

=

I
k

g i

RCIRIEIR

=

il

==
-]

2

\

=
u‘i
=
m

4, =

59

